If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6k^2+16k-7=0
a = 6; b = 16; c = -7;
Δ = b2-4ac
Δ = 162-4·6·(-7)
Δ = 424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{424}=\sqrt{4*106}=\sqrt{4}*\sqrt{106}=2\sqrt{106}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{106}}{2*6}=\frac{-16-2\sqrt{106}}{12} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{106}}{2*6}=\frac{-16+2\sqrt{106}}{12} $
| 2/5x-9=5 | | 3x+13=5x−5 | | 15x-10=-9x+2 | | x=30+0,25x | | 2c^2+9c-3=0 | | -t+5=t-19 | | X^3-8x^2+4x+12=0 | | 2/3(3x+6)=12 | | 7x/4-6=5/8 | | 120x-7-80x=73 | | 0.25(12+4p)-0.5(10+2p)=0 | | 2-6t=0 | | p-15=13-6p | | 121-w=219 | | 83=5u-17 | | 7(2x+3)=35= | | 3d+8=2d-17 | | x+1/2=3/6 | | 7x-1=2+5 | | 2/7b=-6 | | |3+2x|−5=18 | | 79+x+10+2x+x+1=360 | | x(x-4)(x-8)(x-12)=105 | | 3.9+10m=7.54 | | 5x+22=7(x+6) | | 450/450=10/w | | k/4-9/4=10 | | -35=3(w+5)-8w | | g/8-8/8=7/8 | | 14x-96=224+4x | | 7+8n=3n+2 | | 77+w=70+7 |